-
2019-05-20
-
2019-05-20
-
2019-05-20
-
2019-05-20
-
2019-05-20
更新时间:2019-05-19 16:39:10作者:三水老师
2019-05-20
2019-05-20
2019-05-20
2019-05-20
2019-05-20
三、解答题.(共75分)
16.(10分)计算或解答
(1)﹣+|1﹣|﹣(2+)
(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.
【分析】(1)首先利用算术平方根以及立方根和绝对值的性质分别化简得出答案;
(2)利用算术平方根以及平方根的定义得出m的值进而得出答案.
【解答】解:(1)原式=6+3+2﹣1﹣2﹣2
=6;
(2)由题意得:2m﹣6≥0,
∴m≥3,∴m﹣2>0,
因此2m﹣6=﹣(2﹣m),
∴m=4,所以这个数是(2m﹣6)2=4.
【点评】此题主要考查了实数运算,正确把握相关定义是解题关键.
17.(8分)分解因式.
(1)4x3y﹣4x2y2+xy3
(2)m3(x﹣2)+m(2﹣x)
【分析】(1)多项式共3项且有公因式,应先提取公因式,再考虑用完全平方公式分解;
(2)多项式变形为m3(x﹣2)﹣m(x﹣2),先提取公因式,再考虑用平方差公式分解.
【解答】解:(1)原式=xy(4x2﹣4xy+y2)
=xy(2x﹣y)2
(2)原式=m3(x﹣2)﹣m(x﹣2)
=m(x﹣2)(m2﹣1)
=m(x﹣2)(m+1)(m﹣1)
【点评】本题考查了提公因式法与公式法分解因式,一般来说,多项式若有公因式先提取公因式,再考虑运用公式法分解.
18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)
(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
【分析】(1)先算括号内的乘法,再合并同类项,最后算除法即可;
(2)先算乘法,再合并同类项,最后代入求出即可.
【解答】解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)
=(﹣3a2b2﹣ab)÷(﹣ab)
=3ab+1;
(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x
=x2+3,
当x=﹣2时,原式=(﹣2)2+3=5.
【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.
19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:
(1)(a﹣1)(b﹣1)
(2)a2+b2
(3)a﹣b
【分析】(1)把式子展开,整体代入求出结果;
(2)利用完全平方公式,把a2+b2变形为(a+b)2﹣2ab,整体代入求出结果;
(3)根据已知和(2)的结果,先求出(a﹣b)2的值,再求它的平方根.
【解答】解:(1)原式=ab﹣a﹣b+1
=ab﹣(a+b)+1
=﹣2﹣3+1
=﹣4
(2)原式=(a+b)2﹣2ab
=9+4
=13
(3)∵(a﹣b)2
=a2+b2﹣2ab
=13+4
=17
∴a﹣b=±.
【点评】本题考查了整体代入和完全平方公式的变形.解决本题的关键是利用转化的思想.
20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.
【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.
【解答】证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵BF=DE,
∴BF+EF=DE+EF,
∴BE=DF.
在Rt△AEB和Rt△CFD中,
,
∴Rt△AEB≌Rt△CFD(HL),
∴∠B=∠D,
∴AB∥CD.
【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.
21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;
(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca的值.
【分析】(1)根据整式的混合运算的法则化简后,代入求值即可;
(2)原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.
【解答】(1)解:原式=a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ac+c2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;
(2)解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)= [(a﹣b)2+(b﹣c)2+(c﹣a)2]
当a=2015x+2016,b=2015x+2017,c=2015x+2018,
∴原式=×[(﹣1)2+(﹣1)2+22]=3.
【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.
22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).
(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?
【分析】(1)依据点P点Q的运动速度相等,经过1秒,运用SAS即可得到△BPD和△CQP全等;
(2)依据BP≠CQ,△BPD≌△CQP,可得BP=CP=4,进而得出t=2,a=3,即可得到当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.
【解答】解:(1)△BPD和△CQP全等
理由:∵t=1秒,
∴BP=CQ=2,
∴CP=8﹣BP=6,
∵AB=12,
∴BD=12×=6,
∴BD=CP,
又∠B=∠C,
∴△BPD≌△CQP(SAS);
(2)∵BP≠CQ,△BPD≌△CQP,
∴BP=CP=4,
∴t=2,
∴BD=CQ=at=2a=6,
∴a=3,
∴当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.
【点评】本题考查了全等三角形的性质和判定,解一元一次方程的应用,能求出△BPD≌△CQP是解此题的关键,注意:全等三角形的对应边相等,对应角相等.
23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE = CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是: EF=|BE﹣AF| .
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ∠α+∠ACB=180°. ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.
【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.
【解答】解:(1)①如图1中,
E点在F点的左侧,
∵BE⊥CD,AF⊥CD,∠ACB=90°,
∴∠BEC=∠AFC=90°,
∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF﹣CE=BE﹣AF,
当E在F的右侧时,同理可证EF=AF﹣BE,
∴EF=|BE﹣AF|;
故答案为=,EF=|BE﹣AF|.
②∠α+∠ACB=180°时,①中两个结论仍然成立;
证明:如图2中,
∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF﹣CE=BE﹣AF,
当E在F的右侧时,同理可证EF=AF﹣BE,
∴EF=|BE﹣AF|;
故答案为∠α+∠ACB=180°.
(2)结论:EF=BE+AF.
理由:如图3中,
∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.
【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.